Communication Complexity

Suhas Vittal

Lecture outline:

1. Introduction to big O, Θ, Ω notation.
(a) Examples:
i. $n^{2}+2 n+1=\Theta\left(n^{2}\right)$.
ii. $n^{3}+2 n^{2} \log (n)+1=\Theta\left(n^{3}\right)$.
iii. $2^{(2 n)}=\Theta\left(\left(2^{n}\right)^{2}\right)$
iv. $n^{\log n}=\Theta\left(2^{(\log n)^{2}}\right)$.
v. $1 / f(n)=O(1)$ for all polynomials f.
2. Deterministic communication complexity.
(a) Some "communication games". Given two 8-bit binary numbers x and y, how long does it take to:
i. Check if $x=y$ in the worst case?
ii. Check if $x \equiv y \bmod 5$ in the worst case?
(b) Motivation: suppose we have two parties called Alice and Bob. Given some function f that returns YES (1) or NO (0) on two inputs x, y, how many bits do Alice and Bob need to communicate to compute $f(x, y)$? In communication complexity, we deal with protocols, which are "algorithms involving communication." Deterministic communication complexity of a function f is denoted $C(f)$.
(c) Fundamental bound: $C(f) \leq \log (N)+1$ for a function $f:[N] \times[N] \rightarrow\{0,1\}$. (Why is this true?)
(d) Proving lower bounds on communication for a function f.
i. Theorem. $C(f) \geq \log (\chi(f))$. Show proof involving combinatorial rectangles over domain of some function f. Introduce $\chi(f)$. Why does this work?
ii. Corollary. $C\left(\mathrm{EQ}_{N}\right)=\log (N)+1$.
iii. Challenge problem: let $\mathrm{LE}_{N}:[N] \times[N] \rightarrow\{0,1\}$ such that $\mathrm{LE}_{N}(x, y)=1$ iff $x \leq y$. Prove $C\left(\mathrm{LE}_{N}\right)=\log (N)+1$.
iv. Challenge problem: let $\operatorname{DISJ}_{n}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ such that $\operatorname{DISJ}_{n}(x, y)=1$ iff for all $1 \leq i \leq n, x_{i}=0 \vee y_{i}=0$. Prove $C\left(\mathrm{DISJ}_{n}\right) \geq \Omega(n)$.
3. Randomized communication complexity.
(a) Two ideas in complexity theory: bounded-error probablistic algorithms/protocols, and unboundederror probablistic algorithms/protocols. What's the difference?
i. Bounded-error: want to return the correct answer with probability $p \geq 2 / 3$.
ii. Unbounded-error: want to return the correct answer with probability $p>1 / 2$.

Bounded-error communication complexity of f is denoted $R(f)$. Unbounded-error communication complexity of f is denoted $U(f)$.
(b) Randomized protocols have two flavors: public coin and private coin. Flipping a coin yields a random bit: heads (1) or tails (0).
(c) Public coin complexity.
i. Another game: use a coin to generate a random 8-bit string. What's the fastest way you can think of checking if two numbers x, y are equal using this public random string?
ii. Theorem. $U_{\text {pub }}\left(\mathrm{EQ}_{N}\right) \leq 2$.
iii. Challenge Problem: prove $U_{\text {pub }}\left(\right.$ DISJ $\left._{n}\right) \leq O(\log n)$.
(d) Private coin complexity.
i. Theorem. $R\left(\mathrm{EQ}_{N}\right) \leq O(\log \log N)$. Preliminary information:
A. Chebyshev's theorem: for all $n>1$, there exists a prime p such that $n<p<2 n$.
B. Any polynomial $f \in \mathbb{F}_{q}[X]$ has at $\operatorname{most} \operatorname{deg}(f)$ roots.

